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Palaeoclimate explains a unique proportion of the
global variation in soil bacterial communities

Manuel Delgado-Baquerizo?*, Andrew Bissett3, David J. Eldridge?® Fernando T. Maestre ©5,
Ji-Zheng He®’, Jun-Tao Wang ©¢, Kelly Hamonts?, Yu-Rong Liu®, Brajesh K. Singh%® and Noah Fierer'®

The legacy impacts of past climates on the current distribution of soil microbial communities are largely unknown. Here, we use
data from more than 1,000 sites from five separate global and regional datasets to identify the importance of palaeoclimatic
conditions (Last Glacial Maximum and mid-Holocene) in shaping the current structure of soil bacterial communities in natural
and agricultural soils. We show that palaeoclimate explains more of the variation in the richness and composition of bacte-
rial communities than current climate. Moreover, palaeoclimate accounts for a unique fraction of this variation that cannot be
predicted from geographical location, current climate, soil properties or plant diversity. Climatic legacies (temperature and
precipitation anomalies from the present to ~20 kyr ago) probably shape soil bacterial communities both directly and indirectly
through shifts in soil properties and plant communities. The ability to predict the distribution of soil bacteria from either pal-
aeoclimate or current climate declines greatly in agricultural soils, highlighting the fact that anthropogenic activities have a
strong influence on soil bacterial diversity. We illustrate how climatic legacies can help to explain the current distribution of soil
bacteria in natural ecosystems and advocate that climatic legacies should be considered when predicting microbial responses

to climate change.

ing in large-scale biome migrations that drive the current

distribution of plant communities'~. For example, long-term
climatic legacies have shaped the distribution and diversity of plant
communities in terrestrial ecosystems through dispersal-limited
recolonization and environmental filtering’*. Similarly, long-term
regional climate history could conceivably explain significant pro-
portions of the variation found in the current richness and compo-
sition of soil microbial communities. For example, a recent study
provides indirect evidence that the last glaciation may have influ-
enced the current distribution of strains of the soil bacterial genus
Streptomyces across the United States™. However, the broader role
of past climate conditions in regulating the current distribution of
microbial communities remains largely unexplored’. If past climates
help to explain the current distribution of microbial communities,
careful consideration of climatic legacies could improve our capac-
ity to predict how soil microbial communities will respond to fore-
casted climate changes, and how this response will affect the myriad
ecosystem services that they provide (such as decomposition, nutri-
ent cycling and climate regulation)’™’.

In theory, palacoclimate could explain the current distribu-
tion of soil microbial communities directly, through differential
changes in temperature and precipitation patterns across mil-
lennia®®. Soil bacteria are known to have short generation times
leading to a fast turnover rate, but they are also highly sensitive
to changes in temperature'®. For example, a recent study demon-
strated that a wide range of soil bacterial taxa show predictable

| he climate of a particular region varies over time, often result-

and consistent preferences for particular temperature conditions'.
These intrinsic characteristics of microbial communities surely
influence their direct response to palaeoclimate. For instance, the
community composition of fast-growing invertebrates responded
immediately to large and abrupt changes in temperature after the
most recent glaciation, a response that left a strong signature in their
contemporary distribution'. Likewise, abrupt changes in climate,
which may have occurred before 10,000 years ago'?, might have also
left a strong signature on the structure of soil bacterial communi-
ties. In this respect, a direct effect from palaeoclimate on soil micro-
bial communities might have occurred in the past (for example in
response to a severe climatic event), but the consequences of this
rapid compositional shift might still be detectable today.

Palaeoclimate can also influence the current structure of bacte-
rial communities indirectly, through its influence on soil properties
and plant community structure*-*. Thus, variations in soil proper-
ties such as pH and total organic carbon, which can have strong
effects on microbial distributions”®"* and change slowly during
ecosystem development'®"’, could drive the effects of palacoclimate
on the contemporary patterns of microbial community composi-
tion and richness. Likewise, palaeoclimate effects on plant com-
munities’* may be associated with corresponding changes in the
composition of soil microbial communities'®. Although the growing
literature focuses on the main drivers of soil microbial communities
in terrestrial ecosystems, we do not know whether climatic legacies
contribute to their current richness and composition patterns at
regional or global scales.

'Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA. 2Hawkesbury Institute for the Environment,
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Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
Departamento de Biologia y Geologia, Fisica y Quimica Inorgénica, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos,
Calle Tulipan Sin Numero, 28933 Méstoles, Spain. ¢State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences, Beijing 100085, China. Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria
3010, Australia. Global Centre for Land Based Innovation, Western Sydney University, Building L9, Locked Bag 1797, Penrith South, New South Wales 2757,
Australia. °Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA. *e-mail: M.DelgadoBaquerizo@gmail.com
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Additionally, if climatic legacies play an important role in regu-
lating current soil microbial distribution, agricultural practices may
reduce or remove any potential effects of palaeoclimate on micro-
bial community composition and richness. Agricultural practices
are known to alter soil microbial communities directly, for instance
by introducing new bacterial taxa associated with crop rhizo-
spheres” or through fertilization?, and indirectly, through changes
in soil properties (soil carbon, soil pH and microbial communi-
ties)*". Marked changes in the composition and richness of soil bac-
teria derived from agricultural practices might potentially mitigate
the direct and indirect influences of climatic legacies on soil micro-
bial communities via soil properties. Soil disturbance is expected to
increase exponentially this century, owing to the increasing inten-
sification of agricultural production needed to meet an increase in
demand for food by 70- 100% by 2050 (ref. >*). Thus, understanding
how agricultural intensification will shift the signature of climatic
legacies on microbial communities could improve our ability to
evaluate and manage anthropogenic soil disturbances.

Here, we evaluated the relative importance of palaeoclimate and
current climate as predictors of the richness (number of phylotypes
observed per sample) and composition (relative abundance of phy-
lotypes) of soil bacteria at global and regional scales after account-
ing for key drivers of bacterial distribution such as geographical
location, soil properties and plant diversity. We did so using data
from five separate regional and global datasets including infor-
mation on the structure of bacterial communities assessed by 16S
ribosomal RNA gene sequencing (see Methods). Together, these
datasets included more than 1,000 sites from all continents except
Antarctica, covering a broad range of ecosystem types (see Methods
and Supplementary Fig. 1). We tested the following hypotheses:
(i) palaeoclimate predicts a unique portion of the variation in the
current richness and composition of soil bacterial communities
in terrestrial ecosystems; (ii) climatic legacies (measured as the
temperature and precipitation anomalies'? between an estimate of
climate 20,000 years ago and another estimate for the present day)
affect the structure of current bacterial communities both directly
and indirectly through soil properties and plant diversity; and

Bacterial composition

Global drylands -
Americas A
Australia

1
I

New South Wales 1

.
T

(iii) soil disturbances linked to agricultural production reduce
the relative importance of palaeoclimate as a predictor of current
microbial community richness and composition. It was not our
intention to merge the five datasets used, which vary in sampling
design and experimental methods (such as primer sets), but to test
our hypotheses using five independent regional and global datasets
from ecosystems that differed in their vegetation, climate and soil
attributes (Methods; Supplementary Fig. 1).

Results
We first used variation partitioning” to quantify the relative con-
tribution of past and current climates as predictors of the richness
and composition of soil bacterial communities. We also included
soil properties and spatial variables'” in our models. This approach
allowed us to quantify the unique contribution of climate from a
particular period to explain the current distribution of soil bacteria
and to differentiate this contribution from that shared among all
predictors. Environmental drivers such as plant diversity, soil prop-
erties and geographical location explained unique portions of the
variation in soil bacterial richness and composition in all datasets
(Fig. 1, Supplementary Figs. 2 and 3). Most importantly, climate
variables from mid-Holocene and Last Glacial Maximum climates
explained a unique percentage of the variation in the richness and
composition of soil bacterial communities (Fig. 1, Supplementary
Figs. 2 and 3). Overall, palaeoclimate was a better predictor of
soil bacterial richness and composition than current climate in all
five datasets (Fig. 1), suggesting that models using current climate
alone have a limited predictive power at regional to global scales.
Palaeoclimate also shared a large part of the variance explaining
bacterial community richness and composition with plant richness
and/or soil properties, suggesting that a large fraction of the appar-
ent effects of palaeoclimate on soil bacterial communities may be
driven by its direct and indirect effects on these ecosystem variables.
We then used structural equation modelling (SEM; see Methods)
to assess the role of climatic legacies in driving bacterial community
composition and richness, and to separate direct effects (tempera-
ture and precipitation anomalies between an estimate of climate

Bacterial richness

=== Palaeoclimate

=== Current climate

== Environmental drivers

=== Palaeoclimate + environmental drivers
== Other shared variance

20 40 60 80 0 20

o

40 60 80 100 120

Variation explained (%)

Fig. 1| Relative contribution of the different predictors used to model bacterial composition and diversity. Panels represent results from variation
partitioning modelling aiming to identify the percentage variance of bacterial community composition explained by past and current climate variables
across five independent large-scale datasets. Unique and shared variance from the Last Glacial Maximum and mid-Holocene in predicting bacterial
community composition and richness were merged in this figure for simplicity. Note that the variation explained by 'palaeoclimate + environmental
drivers' is additional to the one explained either by palaeoclimate only or environmental only. An alternative version of this figure showing the unique and
shared variance of each group of predictors can be found in Supplementary Figs. 2 and 3. Further information on the datasets used in these analyses can be

found in refs 528293538,
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20,000 years ago and another estimate for the present day) and indi-
rect effects (via soil properties and plant diversity) of such legacies
on soil microbial communities. Unlike regression analyses, SEM

Climatic

Global drylands
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Spatial

R?=0.68
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-113**(PCQ > CO)
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&
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Climatic
legacies

offers the ability to separate multiple pathways of influence and to
investigate the complex relationships among environmental predic-
tors commonly found in terrestrial ecosystems (Methods). As SEM

Americas

Spatial

R?=0.49

China
Spatial

0.15**(C)
0.16**(aP)

Plant
richness

Box

-0.76** (PDM - pH)
0.29** (PCQ > pH)
-0.27** (AP > pH)
2,51 (AMT > pH)
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Bacterial
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Fig. 2 | Structural equation model accounting for the direct and indirect (plant diversity and/or soil properties) effects of climatic legacies on the
diversity of bacteria across the five datasets used. a-e, Numbers adjacent to arrows are path coefficients (P values) and are indicative of the standardized
effect size of the relationship. Spatial influence (latitude and longitude) was included to control spatial autocorrelation; however, in this case, path
coefficients were not included for simplicity. The thickness of the arrow represents the strength of the relationship when significant. All variables are
included as independent observable variables. We grouped the different categories of predictors (soil properties, climatic legacies and spatial) in the
same box in the model for graphical simplicity. For the same reason, we only included those direct effects from climatic legacies on soil properties that
could indirectly affect the diversity of bacteria. The rest of the effects from climatic legacies on soil properties are available in Supplementary Tables 5 and
6. Acronyms for climatic and environmental variables are shown in Supplementary Tables 1and 3, respectively. An 'a’ adjacent to a particular chemical
element indicates that the element is in an ‘available’ form. R?, the proportion of variance explained. Significance levels of each predictor are *P < 0.05,
**P < 0.01. Environmental drivers include plant diversity (Global Drylands, China and New South Wales) and/or soil properties and geographical location.
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works on single response variables, we collapsed the bacterial com-
munity compositional data using non-metric multidimensional
scaling (NMDS) for each dataset independently and retained the
first two axes from a 2D solution (Bacterial community 1 and 2;
stress ~0.1 in all cases). Prior to conducting SEM, we used a random
forest® procedure (see Methods) to reduce the number of predictors
to those that significantly explained the variation found in bacte-
rial community richness and composition (geographical location,
climatic legacies, soil properties and plant diversity) for each dataset
(Supplementary Table 4). Random forest procedures are recom-
mended for identifying the main significant predictors of environ-
mental response variables (Methods). Finally, after conducting the
random forest procedure but before the final SEM analyses, we ran
preliminary SEMs to further evaluate whether the effects of climatic
legacies on soil microbial community composition and richness
were independent of those of current climate. We included in these
analyses the selected climatic legacies from random forest analyses,
but also included their corresponding current climate variables. In
general, climatic legacies were as important as, or more important
than, current climate in directly driving the richness and composi-
tion of bacteria across all datasets (Supplementary Fig. 4).

Our final SEM analyses provided solid evidence that climatic
legacies had both direct effects (four of five cases) and indirect (four
of five cases) effects on bacterial richness (Fig. 2; Supplementary
Tables 5 and 6) across the five datasets used. Annual mean tempera-
ture (AMT) and precipitation in the driest month (PDM) showed
the largest total effects (sum of direct and indirect effects from
SEM) on bacterial richness in three of five datasets (Supplementary
Fig. 5). Similarly, we also found both direct (four of five cases) and
indirect (all cases) effects of climatic legacies on the composition
of bacterial communities (for both NMDS axes; Supplementary
Figs. 6-9; Supplementary Tables 5 and 6). In this case, direct effects
were driven both by changes in temperature and in precipitation,
with particular importance of AMT and isothermality, and of
PDM (Supplementary Figs. 6 and 7). Indirect effects of precipita-
tion and temperature legacies on microbial richness were largely
driven by soil properties such as pH (three of five databases for
bacterial richness and all databases cases for bacterial community
composition), organic carbon concentration and texture (two of
five cases for bacterial community composition, respectively; Fig. 2
and Supplementary Figs. 6 and 7). Other soil properties such as
available phosphorus and micronutrients indirectly drove part of
the effects of climatic legacies on microbial community structure
(Fig. 2 and Supplementary Figs. 6 and 7). We also found strong
indirect effects of climatic legacies on soil bacterial richness (three
of three databases) through changes in plant diversity. In contrast,
the effects of climatic legacies on bacterial community composi-
tion were indirectly driven by plant species richness only in China
(Supplementary Fig. 6).

Additional random forest analyses (see Methods and
Supplementary Data Table 7) allowed us to identify some of the
bacterial taxa that were consistently (that is, in more than half of
the datasets) good predictors of major climatic legacies (AMT and
PDM, which were selected using standardized total effects from
SEM; see Methods). For example, we found that the relative abun-
dance of both Planctomycetes and candidate phylum WS3 (recently
renamed Latescibacteria) consistently increased with increasing
PDM from palaeoclimatic to current climates (Supplementary Data
Table 7). In addition, phylum Actinobacteria was found to be an
indicator of changes in temperature over millennia (Supplementary
Data Table 7).

We repeated our variation partitioning models for a subset of
data from the Australia dataset for which we were able to partition
sites between croplands and natural ecosystems located close to
these croplands (66 sites each). This allowed us to evaluate whether
agriculture might alter the predictive power of palaeo- and current

1342

climates. We found that palaeoclimate (mid-Holocene plus Last
Glacial Maximum) still predicted a unique part of the variation
in bacterial diversity within croplands (Fig. 3 and Supplementary
Fig. 10). However, palaeoclimate always had a significantly lower
capacity to predict bacterial diversity in croplands than in natu-
ral ecosystems (Fig. 3 and Supplementary Fig. 10). When the
SEMs were repeated using data from only natural and croplands
sites in Australia (Fig. 3 and Supplementary Fig. 11), we found a
strong reduction in the importance of soil properties as predictors
of microbial community richness and composition, owing to the
extreme disturbance caused by cotton and wheat farming (Fig. 3
and Supplementary Fig. 11).

Discussion

Together, our work provides empirical evidence that palaeoclimate
and climatic legacies (climate anomaly between 20,000 years ago
and today) can leave a strong signature on soil bacterial communi-
ties, which may have influenced the contemporary distribution of
bacterial richness and composition from regional to global scale.
The importance of these results lies in the fact that climatic lega-
cies can be used to better understand and predict the response of
microbial communities to ongoing climate changes, including
rising temperatures and changes in precipitation patterns®. For
example, in arid environments (Global Drylands and New South
Wales datasets; averages of 338/334 and 417/398 mm of current/
Last Glacial Maximum annual precipitation, respectively), increas-
ing PDM from palaeoclimates to current climates resulted in a net
increase (sum of direct and indirect effects) in bacterial richness
(Supplementary Fig. 5). This result is supported by a recent study
highlighting that aridity, a proxy of water availability, is a key driver
of bacterial diversity in global drylands". However, in more humid
environments such as those of the Americas and China (mostly
temperate and tropical ecosystems; average of 948/894mm and
903/1,020mm of current/Last Glacial Maximum annual precipita-
tion, respectively), increases in precipitation (Americas) or PDM
(China) from palaeoclimate to current climates led to reductions in
bacterial richness. This response is probably driven by increases in
the relative abundance of specific microbial taxa under the wettest
conditions' (Fig. 2 and Supplementary Fig. 5). For example, the rel-
ative abundance of both Planctomycetes and phylum Latescibacteria
was positively related to the PDM anomaly from palaeoclimate to
current climates (Supplementary Data Table 7). This result agrees
with expectations that members of these phyla typically prefer wet-
ter environments**°. Interestingly, phylum Actinobacteria was also
found to be an indicator of changes in temperature over millennia,
indicating that this taxon may have been highly influenced by the
last glaciation at the continental scale®®. The effects of increasing
precipitation on bacterial richness observed in China may be indi-
rectly driven by soil acidification as a consequence of soil weather-
ing? (Fig. 2d), as reductions in soil pH are known to reduce soil
bacterial diversity in terrestrial ecosystems. AMT showed the
highest total (sum of direct and indirect effects) positive and nega-
tive effect on bacterial richness for the China and Australia datasets,
respectively (Supplementary Fig. 5). This contrasting result might
be related to the fact that Australia showed the lowest increase in
temperature from palaeo- to current climates in this study (3.5°C),
which resulted in a total positive effect on the diversity of bacte-
ria, compared with the increases found in China (5.6°C), Global
Drylands (5.2°C) and the Americas (10.1°C), where annual tem-
perature legacies had a total negative effect on the diversity of soil
bacterial communities.

Climatic legacies (measured as the temperature and precipita-
tion anomalies'” between an estimate of climate 20,000 years ago
and another estimate for the present day) drove the richness and
composition of bacterial communities both directly and indirectly
through changes in soil properties and plant diversity. Direct
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database. Other details as in Fig. 2.

effects were driven both by changes in temperature and precipita-
tion, with particular importance of AMT, isothermality and PDM
(Supplementary Figs. 6 and 7). This finding is supported by recent
studies that have identified temperature and precipitation as key
global and continental-scale predictors of bacterial community
richness and composition'®. Direct effects include the impacts
derived from rapid climatic changes in the past (mostly occur-
ring prior to 10,000 years ago'’) that have left a strong signature
on the contemporary structure of soil bacterial communities (see
Supplementary Appendix 3 for further rationale on direct effects
from palaeoclimates on soil bacterial communities). Indirect
effects of climatic legacies on bacterial richness and composi-
tion were largely driven by soil properties such as pH and, to a
lesser extent, by organic carbon concentration and texture. These
soil variables, which were included in all datasets, are known to
determine changes in bacterial communities in terrestrial eco-
systems®*~°. Other soil properties such as soil phosphorus and
micronutrients were also found to indirectly drive part of the
effects of climatic legacies on bacterial community structure. In
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general, we found strong indirect effects of climatic legacies on
soil bacterial richness via plant diversity, an indirect effect that was
observed for bacterial composition only in China. Highly diverse
plant communities may promote the richness of soil bacteria by
supporting a wider variety of niches (for example, a range of lit-
ter qualities and rhizosphere products)’’. Climatic legacies in these
datasets always had direct and indirect (via soil properties) effects
on plant richness, providing further support for the notion that
such legacies play important roles in driving current plant diver-
sity in terrestrial ecosystems® .

As expected, geographical location, soil properties and plant
richness accounted for significant variation in microbial commu-
nity richness and composition in our model®*-'>'#*%% However,
a unique and significant portion of variation was explained by
climatic legacies, which suggests that geographical location, soil
properties and plant diversity cannot account solely (via direct
effects) for most of the effects of climatic legacies on soil bacterial
communities (Figs. 1 and 2, and Supplementary Figs. 2, 3, 5-9). We
acknowledge that other soil properties not included in our models
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could improve the predictive power attributed to climatic legacies.
Alternatively, part of the direct effect from climatic legacies on bac-
terial communities may still be indirectly driven by processes that
we did not explicitly account for in the SEMs, such as dispersal-
limited recolonization, which have been traditionally considered as
main drivers of palaeoclimate effects on plant diversity**.

Our analyses also provide evidence that palaeoclimate is influ-
encing the contemporary distribution of bacterial communities in
croplands. However, palaeoclimate always had a significantly lower
capacity to predict the richness and composition of bacterial com-
munities in croplands than in natural ecosystems. This suggests
that agricultural practices have reduced the unique contribution of
palaeoclimate as a predictor of contemporary soil microbial distri-
bution. Our SEM results suggested that the influence of direct and
indirect effects from climatic legacies on the richness and composi-
tion of soil bacterial communities is much lower in croplands (cot-
ton and wheat farming) than in natural ecosystems. Agricultural
practices can potentially erase or lessen the direct effects of such
legacies on soil microbial communities by introducing new taxa of
bacteria associated with the rhizosphere of particular crop species'
and/or by artificially promoting particular bacterial species respon-
sive to watering or fertilization®. Indirect effects from palacoclimate
on soil bacterial communities can be erased (richness) or lessened
(composition) via rapid changes in soil carbon and pH as a result
of agricultural practices. By radically changing the microbial com-
munities in soil, agricultural practices hinder our capacity to predict
the richness and composition of these bacterial communities using
palaeoclimatic information. This result suggests that agriculture not
only removes palaeoclimate legacies on microbial communities, but
also leads to predictions with a lower level of accuracy than those
obtained using data from natural ecosystems. Our results, coupled
with those from previous studies®', highlight the fact that agricul-
tural intensification markedly alters soil microbial community com-
position and diversity in terrestrial ecosystems in ways that can be
difficult to predict.

Together, our results provide strong evidence that past climates
have left their signature on current bacterial diversity patterns across
the globe and that agricultural practices may significantly reduce
the unique signature of climatic legacies on soil bacteria. Overall,
our findings indicate that using palaeoclimate data can improve our
ability to predict the global distribution of soil bacterial communi-
ties in natural ecosystems. Thus, palaeoclimate data should be used
when assessing the responses of these communities, and the eco-
system services that they provide, to global environmental change.

Methods

Study sites and data collection. Drylands (global scale). We used data from ref. .
This dataset is focused on drylands (regions with an aridity index [precipitation/
potential evapotranspiration] < 0.65)* and includes a wide variety of ecosystem
types, including grasslands, shrublands and open woodlands, and environmental
conditions across ‘natural’ dryland ecosystems. Field samples were collected
between 2006 and 2010 from 80 sites located in 12 countries from all continents
except Antarctica (Supplementary Fig. 1), under the most representative vegetation
of each plot, according to a standardized sampling protocol. A composite

sample (from five soil samples; top 7.5cm) was randomly taken under the canopy
of the dominant perennial plant species. Each sample was separated into two
portions. One portion was air-dried and used for chemical analyses. The other was
immediately frozen at —20°C for molecular analyses.

Soil DNA was extracted using the Powersoil DNA Isolation Kit (Mo Bio
Laboratories, Carlsbad, CA, USA) according to the manufacturer’s instructions.
A portion of the bacterial 16S rRNA gene was sequenced using the Illumina
MiSeq platform and the 341F/805R primer sets’. Bioinformatic analyses were
conducted using the QIIME package* as described in ref. °. Operational
taxonomic units (OTUs) were picked at 97% sequence similarity. The resultant
OTU abundance tables from these analyses were rarefied to the same number of
sequences per sample to ensure equal sampling depth (11,789). In addition, we
removed OTUs that had only one read per OTU across all samples. Plant species
richness and soil properties, including texture (percentage of sand), pH, electrical
conductivity, total organic C, C:N ratio, total P, available P, available N (sum of
inorganic and organic N), dissolved phenols, aromatic compounds, proteins,
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amino acids, carbohydrates and N mineralization, were measured as described
elsewhere™ (Supplementary Table 3).

Americas (cross-continental scale). We used data from ref. >, This dataset
includes 48 ‘natural’ sites across North and South America that cover a wide
range of biomes and environmental conditions from Arctic to tropical forests
(Supplementary Fig. 1). Composite soil samples (top 5cm) were collected under
the most representative vegetation of each study site. Each sample was separated
into two portions. One portion was kept fresh and used for chemical analyses; the
other was stored at —80°C until DNA extraction.

Soil DNA was extracted using the Powersoil DNA Isolation Kit, following
the manufacturer’s instructions with the modifications described previously'. A
portion of the bacterial 16S rRNA gene was sequenced using the Illumina MiSeq
platform and the 515F/806R primer sets”. Bioinformatic analyses were conducted
using the QIIME package® as described in ref. **. OTUs were picked at 97%
sequence similarity. All samples were rarefied to 40,000 randomly selected reads
per sample. In addition, we removed OTUs that had only one read per OTU across
all samples.

Soil properties, including texture (percentage of sand), pH, total organic C,
C:N ratio and C mineralization, were measured as described in ref. *
(Supplementary Table 3).

Australia (continental scale). We used a subset of sample locations from the Biome
of Australia Soil Environments (BASE) project® (Supplementary Fig. 1). This
dataset include 531 soil samples belonging to ‘natural’ (465) and agricultural (66)
(cropping by cotton and wheat) ecosystems from Australia. Samples were collected
between 2011 and 2014. Soil samples were collected according to the methods
described in ref. . In brief, at each plot, a composite soil sample (nine discrete soil
samples) from the top 0-10 cm was collected and separated into two portions™.
One portion was air-dried for chemical analyses, the other was frozen (—80°C)
until DNA extraction.

All soil DNA was extracted in triplicate, according to the methods used by
the Earth Microbiome Project™, at the Australian Genome Research Facility.
Amplicons targeting the bacterial 16S rRNA gene were sequenced using the
[lumina MiSeq platform and the 27F - 519R* primer set (see ref. ** for details on
these analyses). Bioinformatic analyses were performed using the mothur software
(v1.34.1)" as explained in ref. **. OTUs were picked at 97% sequence similarity.
The OTU abundance tables were rarefied at 14,237 sequences per sample to ensure
even sampling depth. In addition, we removed OTUs that had only one read per
OTU across all samples.

Soil properties including texture (percentage of sand), pH, electrical
conductivity, total organic C, available N (sum of ammonium and nitrate),
available P, available K, and total K, S, Cu, Fe, Mn, Zn, Al, Ca, Mg, Na and B were
measured as described in ref. ** (Supplementary Table 3).

China (continental scale). This dataset focuses on forest ecosystems (boreal,
temperate mixed coniferous, temperate deciduous, subtropical evergreen
and tropical forests) and includes 300 plots across a wide latitudinal gradient
(approximately 4,000 km) in Eastern China” (Supplementary Fig. 1). In each plot, a
composite soil sample from 15 soil cores was collected from the top 0-10cm. Each
sample was separated into two portions. One portion was air-dried and used for
soil chemical analyses, and the other was stored at —80 °C until DNA extraction.

Soil DNA was extracted using the Powersoil DNA Isolation Kit, with a slight
modification as explained in ref. . A portion of the 16S rRNA gene (515F/806R
primer set)’” was sequenced using the Illumina MiSeq platform. Bioinformatic
analyses were completed using the QIIME pipeline™ (see ref. »* for details on these
analyses). OTUs were picked at 97% sequence similarity. All samples were rarefied
to 40,000 randomly selected reads per sample. In addition, we removed OTUs that
had only one read per OTU across all samples.

Plant species richness and soil properties, including texture (percentage of
sand), pH, total organic C, C:N ratio and available P, were measured as described in
ref. ” (Supplementary Table 3).

New South Wales (regional scale). We used data from ref. **. This dataset
includes data from 54 sites scattered across a 500-km? area of semi-arid eastern
Australia (Supplementary Fig. 1). This survey was undertaken in three woodland
communities dominated by blackbox (Eucalyptus largiflorens), white cypress pine
(Callitris glaucophylla) and river red gum (Eucalyptus camaldulensis). This dataset
includes sites extensively used for livestock grazing, large areas dedicated for
conservation (national parks, nature reserves) and smaller areas devoted to native
forestry. At each site, a soil sample was collected in 2014 from the top 5cm of soil.
For this study, we used the subset of samples collected under tree microsites*. Each
sample was separated into two portions. One portion was air-dried and used for
soil chemical analyses; the other was stored at —20°C until DNA extraction.

Soil DNA was extracted using the Powersoil DNA Isolation Kit according
to the manufacturer’s instructions. Amplicons targeting the bacterial 16S rRNA
gene were sequenced using the Illumina MiSeq platform and the 341F/805R
primer set’. Bioinformatic analyses were done using mothur’” and UPARSE®.
OTUs were picked at 97% sequence similarity. We removed OTUs that had only
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one read per OT'U across all samples, and the resulting OTU abundance tables
were rarefied to 10,851 sequences per sample (the fewest sequences obtained
in a single soil sample).

At each of three positions along a 100-m transect (0 m, 50m, 100 m), we
selected the nearest tree (perennial plant >4 m in height). Two small (0.5m X
0.5m) quadrats were placed midway between the trunk and the canopy edge on
opposite sides of the canopy. Within these small quadrats, we assessed the cover
of all vascular plants by species and used these data to obtain a value of total
plant species richness for each site. Soil properties including texture (percentage
of sand), bulk density and available P were measured as described in ref. **
(Supplementary Table 3).

Climate data. In all cases, a total of 19 standardized climatic variables
(Supplementary Table 1) were obtained for all the sites surveyed from the
Worldclim database (www.worldclim.org). In the case of mid-Holocene and

Last Glacial Maximum climates, we used estimates provided by the Community
Climate System Model (CCSM4; www.worldclim.org)**-"’. We used data at a
spatial resolution of 2.5 minutes (~4.5km at the Equator), as this is the highest
resolution available for the Last Glacial Maximum period. Bioclimatic data are also
available for this resolution for current and mid-Holocene climates, allowing direct
comparison among bioclimatic data at different periods. In all cases, climate data
were at a spatial resolution of 30 seconds for current and mid-Holocene, which
allowed us to compare data at resolutions of 2.5 minutes and 30 seconds for these
two periods. Values calculated using 2.5 minutes were identical to those calculated
using a resolution of 30 seconds in all cases (Pearson’s r>0.99; P <0.001) (see
‘Climatic data cross-validation’ in Supplementary Appendix 1). We acknowledge
that palaeoclimatic data from islands may be inaccurate as a consequence of their
spatial location, which influences the accuracy of the available climate data. This
should not, however, bias the conclusions from this study, which was conducted at
the global scale, given the low number of data points coming from islands'’.

Pre-selection of multicollinearity free climatic variables. We decided to use
only those climate variables (from the original 19 climate variables available from
Worldclim) that were free of multicollinearity within each period of time (that is,
current, Last Glacial Maximum and mid-Holocene). For example, the inclusion
of strongly positively correlated (r>0.8) variables** within a particular group

of predictors is not recommended for variation partitioning modelling as they
may cause multicollinearity problems in the analyses (see below). To preselect
multicollinearity-free climate variables from the original list, we collapsed

the climate information from all datasets and conducted correlation analyses
(Pearson) within each period of time (that is, group of predictors in our variation
partitioning) for the original 19 climate variables available (Supplementary Tables 1
and 2). Based on these analyses, we selected for our analyses the same 8 out of 19
climatic variables for each period of time that were not strongly correlated with
the rest (r<0.8)"": annual mean temperature (AMT), mean diurnal temperature
range (MDR), isothermality (ISO), temperature in the wettest quarter (TWETQ),
annual precipitation (AP), precipitation in the driest month (PDM), precipitation
seasonality (PSEA) and precipitation in the colder quarter (PCQ). These eight
variables include variables that are highly correlated to multiple non-selected
variables and also variables that were unrelated to any other climate variable,
hence could only be explained by themselves. Together, these variables are a
good representation of the rest of non-selected climatic variables (Supplementary
Table 2). We retained these eight variables for the remainder of statistical analyses
presented in this manuscript.

Statistical modelling. We used a combined approach including multiple statistical
models to address our different hypotheses. In particular, we used (1) variation
partitioning modelling to identify whether palaeoclimate can explain a unique
portion of the variation in bacterial community richness and composition that
cannot be accounted for other key predictors of soil microbial communities; (2)
random forest analysis to identify the main individual predictors of bacterial
community richness and composition including spatial predictors, climatic
legacies, soil properties and plant richness; and (3) SEM to identify the direct
and indirect (via soil properties and plant richness) effects of climatic legacies
on bacterial community richness and composition. All of these statistical models
address a particular part of our research question that cannot be addressed using
each approach on its own.

Variation partitioning modelling. We used variation partitioning” to quantify
the relative importance of four groups of predictors: (1) climate variables from
the Last Glacial Maximum, (2) climate variables from the mid-Holocene,

(3) climate variables from current climates and (4) other key environmental
drivers of microbial communities, including plant species richness (available for
Global Drylands, China and New South Wales surveys) and/or soil properties
(14 for Global Drylands, 5 for Americas, 18 for Australia, 5 for the China and 6 for
the New South Wales survey; total organic carbon, texture and pH were included
in all models) and space (site location as defined by latitude and longitude) as
predictors of the bacterial community composition (number of reads per OTU)
and richness (that is, number of OTUs per sample). Climate includes the eight
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multicollinearity-free variables described above (Supplementary Tables 1 and 2).
Geographical location (latitude and longitude) was included in all models to
account for spatial autocorrelation (see ref. ° for a similar approach). The complete
list of predictors available for each database is presented in Supplementary Table 3.
Variation partitioning is a method specifically reccommended to deal with
between-group multicollinearity, as it partitions the variance in a given response
variable that is attributed to a particular group of predictors from that variance
shared among all predictors®. Thus, this analysis allows us to identify whether
climate variables from current, mid-Holocene and Last Glacial Maximum
periods can explain a unique portion of the variance that is not explained by
climate in other periods™. Note that adjusted coefficients of determination in
multiple regression and canonical analysis can, on occasion, take negative values®.
Negative values in the variance explained for a group of predictors on a group of
response variable are interpreted as zeros and correspond to cases in which the
explanatory variables explain less variation than random normal variables would*'.
In all cases, variation partitioning analyses were conducted with the R package
Vegan®. The complete list of predictors available for each database is presented in
Supplementary Table 3.

Assessing comprehensive indices of climatic legacies. To obtain a greater mechanistic
understanding of the role of palaeoclimate in regulating current microbial
richness and composition, we calculated specific climatic legacy indices for

each of the preselected eight climatic variables. To do so, we calculated the
mathematical difference in the values for each climatic variable from Last

Glacial Maximum to current climates (annual precipitationgyey dimae — anUal
precipitation . glacial maximem) fOr €ach site. Therefore, climatic legacies represent
the temperature and precipitation anomalies between an estimate of climate
20,000 years ago and another estimate for the present day'?. This difference
informs us about the climatic legacies—increases, decreases or lack of changes
for a particular climate condition with time—in each of the sites surveyed

from the different datasets (see ‘Climatic legacy indexes cross-validation’ in
Supplementary Appendix 2). We used palaeoclimatic information from the Last
Glacial Maximum rather than mid-Holocene conditions because (1) the former
is included in the period between Last Glacial Maximum and the current climate,
and (2) in general, Last Glacial Maximum conditions were a better predictor of
bacterial richness and composition than climatic conditions in the mid-Holocene
(Supplementary Figs. 2 and 3; Supplementary Appendix 2). Note that the climatic
legacy index used here is based on the differences between two single snapshots
in time (current versus Last Glacial Maximum climates), and thus calculation

of climatic legacy comes with several inherent and important assumptions'?,
some of which are accounted for in Supplementary Appendix 2. Also, most
abrupt changes in climate occurred before 10,000 years ago' (see, for example,
Supplementary Figs. 12-14). Even so, our climatic legacy index still allowed us to
address our research question on whether the difference between climate today
and 20,000 years ago affects the structure of current bacterial communities, and
whether these effects were directly mediated by climatic legacies or indirectly
through soil properties and plant diversity.

Random forest modelling I: pre-selection of main microbial drivers used in structural
equation modelling. Owing to the large number of predictors used, we conducted
a classification random forest analysis* as described in ref. © to identify the main
statistically significant predictors of the composition and richness of bacteria to
be included in our structural equation models (next section). Unlike the variation
partitioning model described above, both random forest and structural equation
modelling take one response variable at each time. In this respect, in the case of
bacterial community composition at the OTU level, we conducted random forest
analyses on the two scores from the 2D solution of a NMDS using the Bray-Curtis
dissimilarity metric (Bacterial community 1 and 2). The complete list of predictors
available for each database is presented in Supplementary Table 3. These analyses
were conducted using the rfPermute package’ of the R statistical software
(http://cran.r-project.org/).

Structural equation modelling. We used SEM* to evaluate the direct effects
(changes in temperature and precipitation variables with time) and indirect
effects (plant diversity and/or soil properties and space) of climatic legacies

on the richness and composition of bacterial communities. The use of SEM is
particularly useful in large-scale correlative studies, as it allows the partitioning
of causal influences among multiple variables, and separation of the direct

and indirect effects of model predictors®. The main structure of our a priori
model was shared across all datasets and response variables (Supplementary
Fig. 15). We only included in these models those variables that were identified
as major statistically significant predictors of the richness and composition of
bacterial communities from random forest analyses (Supplementary Table 4).
Therefore, SEM models conducted for the different datasets contain different
predictors and were independently constructed. The only exceptions to this
were latitude and longitude, which were included in all the models to account
for spatial autocorrelation in our models (as done in ref. °). By simplifying our
models with such an approach, we acknowledge that we may be missing some
indirect effects from excluded variables on bacterial community richness or
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composition. However, we also reduce the complexity of our models, providing

a more comprehensive understanding on the main direct and indirect effects
from climatic legacies on the richness and composition of bacterial communities,
therefore allowing us to properly address our research question. A consequence
of this approach is that direct effects between climatic legacies and soil properties
may not include some of the major climatic legacies controlling soil properties,
obscuring the interpretation of these parts of the models. It was not the goal of
this study to identify the major direct effects of climatic legacies on soil properties.
Consequently, we only included in our models those soil properties that directly
influenced soil bacterial community richness or composition, or that ultimately
could lead to indirect effects of climatic legacy on bacterial communities.

In our models, all variables are included as independent observed variables.
We grouped the different categories of predictors (climatic legacies, soil properties
and spatial) in the same box in the model for graphical simplicity, but these
boxes do not represent latent variables. The climatic legacies box includes all
selected individual climatic legacies identified as significant predictors of bacterial
community richness or composition from random forest analyses. The spatial box
includes latitude and longitude. The soil properties box include all individual soil
properties identified as significant predictors of bacterial community richness
or composition by our random forest analyses. Note that if none of the variables
within a particular box (for example plant richness or soil properties) was selected
by our random forest analyses as significant predictors of a particular microbial
variables and for a particular dataset, that box is excluded in that specific model.
We included both direct and indirect (via soil properties and plant richness) effects
of climatic legacies on the richness and composition of bacterial communities in
our models (see Supplementary Appendix 3).

All variables within a particular box were allowed to covary. Because of this,
all models were originally saturated (zero degrees of freedom). To release a degree
of freedom and make it possible for us to test the goodness of fit of our models, we
conducted the following a priori analyses: (1) we conducted partial correlations
(Pearson) between all predictors within a particular model and (2) we removed
the weakest a priori correlation (Supplementary Table 9) between two predictors
in our models. The goodness of fit of SEM models was checked following ref. .
There is no single universally accepted test of overall goodness of fit for SEM,
applicable in all situations regardless of sample size or data distribution'’. We used
five measures of goodness of fit of our models including the (1) comparative fit
index (CFI) (the model has a good fit when 0.97 < CFI<1.00 and acceptable fit
when 0.95 <CFI <0.97); (2) goodness-of-fit index (GFI) (the model has a good fit
when 0.95 <GFI <1.00 and acceptable fit when 0.90 < GFI <0.95); (3) normed fit
index (NFI) (the model has a good fit when 0.95 <NFI <1.00 and acceptable fit
when 0.90 <NFI<0.95); (4) x* test (v the model has a good fit when 0 <y*/d.f. <2
and 0.05 < P<1.00, and acceptable fit when 2 < y*/d.f. <3 and 0.01 <P <0.05);
and (5) the root mean square error of approximation (RMSEA; the model has
a good fit when 0 <RMSEA <0.05 and 0.10 < P<1.00, and acceptable fit when
0.05 <RMSEA <£0.08 and 0.05<P<0.10)". In general, our a priori models attained
an acceptable or good fit. In particular, 16/21 cases showed a good/acceptable fit
by all criteria (Supplementary Table 10). The remaining 5/21 cases still showed a
good fit in three of the five indexes used here (CFI, GFI and NFI) (Supplementary
Table 10). No post-hoc alterations were made. With an acceptable/good model fit,
we were free to interpret the path coefficients of the model and their associated
P values. SEM models were conducted with the software AMOS 20 (IBM SPSS Inc.,
Chicago, IL, USA).

We also calculated the standardized total effects of plant diversity and/or soil
properties, space and climatic legacies on the richness and composition of bacteria.
The net influence that one variable has on another is calculated by summing all
direct and indirect pathways between the two variables. If the SEM model fits the
data well, the total effect should approximate the bivariate correlation coefficient
for that pair of variables*.

Random forest modelling II: identifying the main phyla characterizing particular
climatic legacies. We also used random forest analysis* as described in ref. ® to
identify the main bacterial phyla predicting a particular climatic legacy. We
focused on the main climatic legacies driving bacterial community composition,
which were identified using the standardized total effects from SEM: AMT (in
China and Australia) and PDM (in Global Drylands and New South Wales)
(Supplementary Figs. 8 and 9). AMT was also a major predictor of the bacterial
community composition in the Americas dataset (Supplementary Fig. 8). In
these analyses, the relative abundance of bacterial phyla acts as a predictor
of a particular legacy variable (AMT or PDM). These phyla include: Thermi,
Acidobacteria, Actinobacteria, AD3, Armatimonadetes, Bacteroidetes, BRCI,
Chlorobi, Chloroflexi, Cyanobacteria, Elusimicrobia, FBP, FCPU426, Fibrobacteres,
Firmicutes, Gemmatimonadetes, GN0O2, Nitrospirae, NKB19, OD1, OP11, OP3,
Planctomycetes, Proteobacteria, Tenericutes, TM6, TM7, Verrucomicrobia,
WPS-2, WS2, WS3 and WS4. These analyses were conducted using the rfPermute
package”” of the R statistical software (http://cran.r-project.org/). The main goal
of these analyses is to identify the main taxa characterizing a particular climatic
legacy from AMT or PDM.

We first identified the main (that is, significant; P<0.05, according to random
forest results) microbial phyla accounting for the variation of particular climatic
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legacies and that are highly related to a particular legacy in a consistent way (those
microbial taxa that are selected from a random forest model as important drivers
of either AMT or PDM in more than half of the datasets; Supplementary Table 7).
We then identified the shape of the relationship between climatic legacies and the
relative abundance of selected taxa. All statistical analyses were independently
performed with each dataset. To identify the best shape describing the relationship
between climatic legacies and microbial taxa, we fitted two different functions
that involve different biological interpretations: linear (positively or negatively
affected by precipitation and temperature legacies) and quadratic (microbial taxa
that are positively or negatively affected by intermediate levels of precipitation

and temperature legacies). We selected the best model fits by following Akaike
information criteria (AIC)™. The lower the AIC index, the better the model. Here,
we consider a AAIC > 2 threshold to differentiate between two different models
and then select the best of those models (see ref. *° for a similar approach). When
both quadratic and linear models were similar (AAIC <2), we selected the linear
(most parsimonious) model.

Data accessibility. Data associated with this paper have been deposited
in figshare: https://figshare.com/s/e3e47dc51ac2090f38bb (DOI: 10.6084/
m9.figshare.5048311).
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